CB-India Bonus: Surprise for Frequent Buyers, add books to the cart now!!  
SAP Press, Shroff Publishing and books worth Rs.2000 & above, no shipping charges!!  
Now Pay on Delivery also Available!!
Kindly Note due to the on-going Pandemic Crisis, there can be unexpected delays in 
delivering/procurement of books, we will try our best to supply the books in the 
time frame mentioned but there can be delays beyond our control. 
Please bear with us.

0 Your Cart

Machine Learning with Go Quick Start Guide:

Hands-on techniques for building supervised and unsupervised machine learning workflows

Author: Michael Bironneau

Michael Bironneau (Author)
Visit Cb-India's Author Page
Books by him and info about author and more.

Are you a Author?
Learn more here

Save
65%

Hover over an image to enlarge

MRP: MRP: $22.47
Net Price: $7.92
You save: $14.55 (64.74%)
Leadtime to ship in days (default): E-Book Immediate, Print Book usually ships in 7-8 days

This product is electronically distributed.

9781838550356
Price in points: 599 points
Reward points: 6 points

Minimum quantity for "Machine Learning with Go Quick Start Guide:

Hands-on techniques for building supervised and unsupervised machine learning workflows

" is 1.

Please sign in to buy

This product cannot be added to the
cart because you are not logged in.

Add to wish list Compare

Share

Description

This quick start guide will bring the readers to a basic level of understanding when it comes to the Machine Learning (ML) development lifecycle, will introduce Go ML libraries and then will exemplify common ML methods such as Classification, Regression, and Clustering

Key Features

  • Your handy guide to building machine learning workflows in Go for real-world scenarios
  • Build predictive models using the popular supervised and unsupervised machine learning techniques
  • Learn all about deployment strategies and take your ML application from prototype to production ready

Book Description

Machine learning is an essential part of today's data-driven world and is extensively used across industries, including financial forecasting, robotics, and web technology. This book will teach you how to efficiently develop machine learning applications in Go.

The book starts with an introduction to machine learning and its development process, explaining the types of problems that it aims to solve and the solutions it offers. It then covers setting up a frictionless Go development environment, including running Go interactively with Jupyter notebooks. Finally, common data processing techniques are introduced.

The book then teaches the reader about supervised and unsupervised learning techniques through worked examples that include the implementation of evaluation metrics. These worked examples make use of the prominent open-source libraries GoML and Gonum.

The book also teaches readers how to load a pre-trained model and use it to make predictions. It then moves on to the operational side of running machine learning applications: deployment, Continuous Integration, and helpful advice for effective logging and monitoring.

At the end of the book, readers will learn how to set up a machine learning project for success, formulating realistic success criteria and accurately translating business requirements into technical ones.

What you will learn

  • Understand the types of problem that machine learning solves, and the various approaches
  • Import, pre-process, and explore data with Go to make it ready for machine learning algorithms
  • Visualize data with gonum/plot and Gophernotes
  • Diagnose common machine learning problems, such as overfitting and underfitting
  • Implement supervised and unsupervised learning algorithms using Go libraries
  • Build a simple web service around a model and use it to make predictions

Who this book is for

This book is for developers and data scientists with at least beginner-level knowledge of Go, and a vague idea of what types of problem Machine Learning aims to tackle. No advanced knowledge of Go (and no theoretical understanding of the math that underpins Machine Learning) is required.

Table of Contents

  1. Introducing Machine Leaning with Go
  2. Setting Up the Development Environment
  3. Supervised Learning
  4. Unsupervised Learning
  5. Using Pretrained Models
  6. Deploying Machine Learning Applications
  7. Conclusion - Successful ML Projects

Features

Author:
Michael Bironneau
Binding:
E-Book
Country Origin:
UK
Edition :
1
Leadtime to ship in days (default):
E-Book Immediate, Print Book usually ships in 7-8 days
Page:
168
Publisher:
Packt Publishing (E-Books)
Year:
2019

Tags

Reviews

No posts found

Possibly you may be interested
 
Fast and high quality delivery

Our company makes delivery all over the country

Quality assurance and service

We offer only those goods, in which quality we are sure