Practicing Trustworthy Machine Learning

Consistent, Transparent, and Fair AI Pipelines

Author: Yada Pruksachatkun

Yada Pruksachatkun (Author)
Visit Author Page
Books by him and info about author and more.

Are you a Author?
Learn more here

Write a review
Save 10%
Write a review
9789355422194
MRP: $1397
You Pay: $1257
You save: $1.40
Leadtime to ship in days (default): Usually ships in 2 days
In stock
Reward points: 11 points
+
Our advantages
  • — SMS notification
  • — Return and exchange
  • — Different payment methods
  • — Best price
  • — Personalised Service
AuthorYada Pruksachatkun Leadtime to ship in days (default)Usually ships in 2 days

With the increasing use of AI in high-stakes domains such as medicine, law, and defense, organizations spend a lot of time and money to make ML models trustworthy. Many books on the subject offer deep dives into theories and concepts. This guide provides a practical starting point to help development teams produce models that are secure, more robust, less biased, and more explainable.

Authors Yada Pruksachatkun, Matthew McAteer, and Subhabrata Majumdar translate best practices in the academic literature for curating datasets and building models into a blueprint for building industry-grade trusted ML systems. With this book, engineers and data scientists will gain a much-needed foundation for releasing trustworthy ML applications into a noisy, messy, and often hostile world.

You'll learn:

  • Methods to explain ML models and their outputs to stakeholders
  • How to recognize and fix fairness concerns and privacy leaks in an ML pipeline
  • How to develop ML systems that are robust and secure against malicious attacks
  • Important systemic considerations, like how to manage trust debt and which ML obstacles require human intervention

About the Author

Yada Pruksachatkun is a machine learning scientist at Infinitus, a conversational AI startup that automates calls in the healthcare system. She has worked on trustworthy natural language processing as an Applied Scientist at Amazon, and led the first healthcare NLP initiative within mid-sized startup ASAPP. She did research transfer learning in NLP in graduate school at NYU and was advised by Professor Sam Bowman.

Matthew McAteer is the creator of 5cube Labs, an ML consultancy that has worked with over 100 companies in industries ranging from architecture to medicine to agriculture. Matthew worked with the Tensorflow team at Google on probabilistic programming, and previously worked in biomedical research in labs at MIT and Harvard Medical School.

Subhabrata (Subho) Majumdar is a Senior Applied Scientist at Splunk. Previously, he spent 3 years in AT&T, where he led research and development on ethical AI. Subho deeply believes in the power of data to bring about positive changes in the world---he has cofounded the Trustworthy ML Initiative, and has been a part of multiple successful industry-academia collaborations in the data for good space. Subho holds a PhD in Statistics from the University of Minnesota.

Author
Yada Pruksachatkun
Binding
Paperback
Condition Type
New
Country Origin
India
Edition
1
Gift Wrap
Yes
Leadtime to ship in days (default)
Usually ships in 2 days
Page
274
Publisher
Shroff/O'Reilly
Year
2023
Find similar

TOC (9789355422194_toc.pdf, 178 Kb) [Download]

No reviews found

Possibly you may be interested
  • Forthcoming/Pre-Order
  • Bestsellers
  • Recently Viewed
 
 
 
Fast and high quality delivery

Our company makes delivery all over the country

Quality assurance and service

We offer only those goods, in which quality we are sure

Returns within 30 days

You have 30 days to test your purchase